Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Metabolites ; 14(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38393006

RESUMO

Accurate positron emission tomography (PET) data quantification relies on high-quality input plasma curves, but venous blood sampling may yield poor-quality data, jeopardizing modeling outcomes. In this study, we aimed to recover sub-optimal input functions by using information from the tail (5th-100th min) of curves obtained through the frequent sampling protocol and an input recovery (IR) model trained with reference curves of optimal shape. Initially, we included 170 plasma input curves from eight published studies with clamp [18F]-fluorodeoxyglucose PET exams. Model validation involved 78 brain PET studies for which compartmental model (CM) analysis was feasible (reference (ref) + training sets). Recovered curves were compared with original curves using area under curve (AUC), max peak standardized uptake value (maxSUV). CM parameters (ref + training sets) and fractional uptake rate (FUR) (all sets) were computed. Original and recovered curves from the ref set had comparable AUC (d = 0.02, not significant (NS)), maxSUV (d = 0.05, NS) and comparable brain CM results (NS). Recovered curves from the training set were different from the original according to maxSUV (d = 3) and biologically plausible according to the max theoretical K1 (53//56). Brain CM results were different in the training set (p < 0.05 for all CM parameters and brain regions) but not in the ref set. FUR showed reductions similarly in the recovered curves of the training and test sets compared to the original curves (p < 0.05 for all regions for both sets). The IR method successfully recovered the plasma inputs of poor quality, rescuing cases otherwise excluded from the kinetic modeling results. The validation approach proved useful and can be applied to different tracers and metabolic conditions.

3.
J Med Chem ; 67(1): 17-37, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113353

RESUMO

Mitochondria dysfunctions are typical hallmarks of cardiac disorders (CDs). The multiple tasks of this energy-producing organelle are well documented, but its pathophysiologic involvement in several manifestations of heart diseases, such as altered electromechanical coupling, excitability, and arrhythmias, is still under investigation. The human 18 kDa translocator protein (TSPO) is a protein located on the outer mitochondrial membrane whose expression is altered in different pathological conditions, including CDs, making it an attractive therapeutic and diagnostic target. Currently, only a few TSPO ligands are employed in CDs and cardiac imaging. In this Perspective, we report an overview of the emerging role of TSPO at the heart level, focusing on the recent literature concerning the development of TSPO ligands used for fighting and imaging heart-related disease conditions. Accordingly, targeting TSPO might represent a successful strategy to achieve novel therapeutic and diagnostic strategies to unravel the fundamental mechanisms and to provide solutions to still unanswered questions in CDs.


Assuntos
Cardiopatias , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Membranas Mitocondriais/metabolismo , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Ligantes
4.
Diabetologia ; 67(3): 407-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099962

RESUMO

The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) imaging with the tracer [18F]-2-fluoro-2-deoxy-D-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. While the hyperinsulinaemic-euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Glicemia/metabolismo , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Tomografia por Emissão de Pósitrons , Glucose/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Insulina/metabolismo
5.
Cardiovasc Diabetol ; 22(1): 349, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115004

RESUMO

OBJECTIVE: We recently demonstrated that treatment with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) leads to an increase in myocardial flow reserve in patients with type 2 diabetes (T2D) with stable coronary artery disease (CAD). The mechanism by which this occurs is, however, unclear. One of the risk factors for cardiovascular disease is inflammation of epicardial adipose tissue (EAT). Since the latter is often increased in type 2 diabetes patients, it could play a role in coronary microvascular dysfunction. It is also well known that SGLT-2i modify adipose tissue metabolism. We aimed to investigate the effects of the SGLT-2i dapagliflozin on metabolism and visceral and subcutaneous adipose tissue thickness in T2D patients with stable coronary artery disease and to verify whether these changes could explain observed changes in myocardial flow. METHODS: We performed a single-center, prospective, randomized, double-blind, controlled clinical trial with 14 T2D patients randomized 1:1 to SGLT-2i dapagliflozin (10 mg daily) or placebo. The thickness of visceral (epicardial, mediastinal, perirenal) and subcutaneous adipose tissue and glucose uptake were assessed at baseline and 4 weeks after treatment initiation by 2-deoxy-2-[18F]fluoro-D-glucose Positron Emission Tomography/Computed Tomography during hyperinsulinemic euglycemic clamp. RESULTS: The two groups were well-matched for baseline characteristics (age, diabetes duration, HbA1c, BMI, renal and heart function). Dapagliflozin treatment significantly reduced EAT thickness by 19% (p = 0.03). There was a significant 21.6% reduction in EAT glucose uptake during euglycemic hyperinsulinemic clamp in the dapagliflozin group compared with the placebo group (p = 0.014). There were no significant effects on adipose tissue thickness/metabolism in the other depots explored. CONCLUSIONS: SGLT-2 inhibition selectively reduces EAT thickness and EAT glucose uptake in T2D patients, suggesting a reduction of EAT inflammation. This could explain the observed increase in myocardial flow reserve, providing new insights into SGLT-2i cardiovascular benefits.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Tecido Adiposo/metabolismo , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/tratamento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Tecido Adiposo Epicárdico , Glucose/metabolismo , Inflamação/tratamento farmacológico , Estudos Prospectivos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
6.
Cells ; 12(22)2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998321

RESUMO

Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.


Assuntos
Lipodistrofia Parcial Familiar , Humanos , Adipócitos Marrons/metabolismo , Lamina Tipo A/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacologia , Receptores de Mineralocorticoides/metabolismo , Células HEK293 , Tecido Adiposo Marrom/metabolismo
7.
Brain Behav Immun ; 114: 94-110, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37557963

RESUMO

The gut microbiota has been causally linked to cognitive development. We aimed to identify metabolites mediating its effect on cognitive development, and foods or nutrients related to most promising metabolites. Faeces from 5-year-old children (DORIAN-PISAC cohort, including 90 general population families with infants, 42/48 females/males, born in 2011-2014) were transplanted (FMT) into C57BL/6 germ-free mice. Children and recipient mice were stratified by cognitive phenotype, or based on protective metabolites. Food frequency questionnaires were obtained in children. Cognitive measurements in mice included five Y-maze tests until 23 weeks post-FMT, and (at 23 weeks) PET-CT for brain metabolism and radiodensity, and ultrasound-based carotid vascular indices. Children (faeces, urine) and mice (faeces, plasma) metabolome was measured by 1H NMR spectroscopy, and the faecal microbiota was profiled in mice by 16S rRNA amplicon sequencing. Cognitive scores of children and recipient mice were correlated. FMT-dependent modifications of brain metabolism were observed. Mice receiving FMT from high-cognitive or protective metabolite-enriched children developed superior cognitive-behavioural performance. A panel of metabolites, namely xanthine, hypoxanthine, formate, mannose, tyrosine, phenylalanine, glutamine, was found to mediate the gut-cognitive axis in donor children and recipient mice. Vascular indices partially explained the metabolite-to-phenotype relationships. Children's consumption of legumes, whole-milk yogurt and eggs, and intake of iron, zinc and vitamin D appeared to support protective gut metabolites. Overall, metabolites involved in inflammation, purine metabolism and neurotransmitter synthesis mediate the gut-cognitive axis, and holds promise for screening. The related dietary and nutritional findings offer leads to microbiota-targeted interventions for cognitive protection, with long-lasting effects.

8.
J Clin Med ; 12(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048767

RESUMO

We aimed to investigate the effects of maternal obesity on brain structure and metabolism in frail women, and their reversibility in response to exercise. We recruited 37 frail elderly women (20 offspring of lean/normal-weight mothers (OLM) and 17 offspring of obese/overweight mothers (OOM)) and nine non-frail controls to undergo magnetic resonance and diffusion tensor imaging (DTI), positron emission tomography with Fluorine-18-fluorodeoxyglucose (PET), and cognitive function tests (CERAD). Frail women were studied before and after a 4-month resistance training, and controls were studied once. White matter (WM) density (voxel-based morphometry) was higher in OLM than in OOM subjects. Exercise increased WM density in both OLM and OOM in the cerebellum in superior parietal regions in OLM and in cuneal and precuneal regions in OOM. OLM gained more WM density than OOM in response to intervention. No significant results were found from the Freesurfer analysis, nor from PET or DTI images. Exercise has an impact on brain morphology and cognition in elderly frail women.

9.
Neurosci Biobehav Rev ; 149: 105143, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990372

RESUMO

Type 2 diabetes mellitus (T2DM) is a main public health concern, with increasing prevalence and growingly premature onset in children, in spite of emerging and successful therapeutic options. T2DM promotes brain aging, and younger age at onset is associated with a higher risk of subsequent dementia. Preventive strategies should address predisposing conditions, like obesity and metabolic syndrome, and be started from very early and even prenatal life. Gut microbiota is an emerging target in obesity, diabetes and neurocognitive diseases, which could be safely modulated since pregnancy and infancy. Many correlative studies have supported its involvement in disease pathophysiology. Faecal material transplantation (FMT) studies have been conducted in clinical and preclinical settings to deliver cause-effect proof and mechanistic insights. This review provides a comprehensive overview of studies in which FMT was used to cure or cause obesity, metabolic syndrome, T2DM, cognitive decline and Alzheimer's disease, including the evidence available in early life. Findings were analysed to dissect consolidated from controversial results, highlighting gaps and possible future directions.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Síndrome Metabólica , Criança , Humanos , Síndrome Metabólica/terapia , Microbioma Gastrointestinal/fisiologia , Diabetes Mellitus Tipo 2/terapia , Confiança , Obesidade/terapia , Disfunção Cognitiva/terapia
10.
Diabetes Obes Metab ; 25(2): 426-434, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36204991

RESUMO

AIMS: To examine the effect of pioglitazone on epicardial (EAT) and paracardial adipose tissue (PAT) and measures of diastolic function and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). METHODS: Twelve patients with T2DM without clinically manifest cardiovascular disease and 12 subjects with normal glucose tolerance (NGT) underwent cardiac magnetic resonance imaging to quantitate EAT and PAT and diastolic function before and after pioglitazone treatment for 24 weeks. Whole-body insulin sensitivity was measured with a euglycaemic insulin clamp and the Matsuda Index (oral glucose tolerance test). RESULTS: Pioglitazone reduced glycated haemoglobin by 0.9% (P < 0.05), increased HDL cholesterol by 7% (P < 0.05), reduced triacylglycerol by 42% (P < 0.01) and increased whole-body insulin-stimulated glucose uptake by 71% (P < 0.01) and Matsuda Index by 100% (P < 0.01). In patients with T2DM, EAT (P < 0.01) and PAT (P < 0.01) areas were greater compared with subjects with NGT, and decreased by 9% (P = 0.03) and 9% (P = 0.09), respectively, after pioglitazone treatment. Transmitral E/A flow rate and peak left ventricular flow rate (PLVFR) were reduced in T2DM versus NGT (P < 0.01) and increased following pioglitazone treatment (P < 0.01-0.05). At baseline normalized PLVFR inversely correlated with EAT (r = -0.45, P = 0.03) but not PAT (r = -0.29, P = 0.16). E/A was significantly and inversely correlated with EAT (r = -0.55, P = 0.006) and PAT (r = -0.40, P = 0.05). EAT and PAT were inversely correlated with whole-body insulin-stimulated glucose uptake (r = -0.68, P < 0.001) and with Matsuda Index (r = 0.99, P < 0.002). CONCLUSION: Pioglitazone reduced EAT and PAT areas and improved left ventricular (LV) diastolic function in T2DM. EAT and PAT are inversely correlated (PAT less strongly) with LV diastolic function and both EAT and PAT are inversely correlated with measures of insulin sensitivity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tiazolidinedionas , Humanos , Pioglitazona/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Glicemia , Insulina , Pericárdio/diagnóstico por imagem , Pericárdio/patologia , Glucose , Tecido Adiposo/patologia
11.
BMC Med ; 20(1): 500, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575453

RESUMO

BACKGROUND: Obesity and related co-morbidities represent a major health challenge nowadays, with a rapidly increasing incidence worldwide. The gut microbiome has recently emerged as a key modifier of human health that can affect the development and progression of obesity, largely due to its involvement in the regulation of food intake and metabolism. However, there are still few studies that have in-depth explored the functionality of the human gut microbiome in obesity and even fewer that have examined its relationship to eating behaviors. METHODS: In an attempt to advance our knowledge of the gut-microbiome-brain axis in the obese phenotype, we thoroughly characterized the gut microbiome signatures of obesity in a well-phenotyped Italian female cohort from the NeuroFAST and MyNewGut EU FP7 projects. Fecal samples were collected from 63 overweight/obese and 37 normal-weight women and analyzed via a multi-omics approach combining 16S rRNA amplicon sequencing, metagenomics, metatranscriptomics, and lipidomics. Associations with anthropometric, clinical, biochemical, and nutritional data were then sought, with particular attention to cognitive and behavioral domains of eating. RESULTS: We identified four compositional clusters of the gut microbiome in our cohort that, although not distinctly associated with weight status, correlated differently with eating habits and behaviors. These clusters also differed in functional features, i.e., transcriptional activity and fecal metabolites. In particular, obese women with uncontrolled eating behavior were mostly characterized by low-diversity microbial steady states, with few and poorly interconnected species (e.g., Ruminococcus torques and Bifidobacterium spp.), which exhibited low transcriptional activity, especially of genes involved in secondary bile acid biosynthesis and neuroendocrine signaling (i.e., production of neurotransmitters, indoles and ligands for cannabinoid receptors). Consistently, high amounts of primary bile acids as well as sterols were found in their feces. CONCLUSIONS: By finding peculiar gut microbiome profiles associated with eating patterns, we laid the foundation for elucidating gut-brain axis communication in the obese phenotype. Subject to confirmation of the hypotheses herein generated, our work could help guide the design of microbiome-based precision interventions, aimed at rewiring microbial networks to support a healthy diet-microbiome-gut-brain axis, thus counteracting obesity and related complications.


Assuntos
Microbioma Gastrointestinal , Humanos , Feminino , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Multiômica , Obesidade/genética , Dieta , Comportamento Alimentar/fisiologia , Fezes/microbiologia
12.
Cardiovasc Diabetol ; 21(1): 173, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057768

RESUMO

OBJECTIVE: Cardiovascular (CV) outcome trials have shown that in patients with type 2 diabetes (T2D), treatment with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) reduces CV mortality and hospital admission rates for heart failure (HF). However, the mechanisms behind these benefits are not fully understood. This study was performed to investigate the effects of the SGLT-2i dapagliflozin on myocardial perfusion and glucose metabolism in patients with T2D and stable coronary artery disease (coronary stenosis ≥ 30% and < 80%), with or without previous percutaneous coronary intervention (> 6 months) but no HF. METHODS: This was a single-center, prospective, randomized, double-blind, controlled clinical trial including 16 patients with T2D randomized to SGLT-2i dapagliflozin (10 mg daily) or placebo. The primary outcome was to detect changes in myocardial glucose uptake (MGU) from baseline to 4 weeks after treatment initiation by [(18)F]2-deoxy-2-fluoro-D-glucose (FDG) PET/CT during hyperinsulinemic euglycemic clamp. The main secondary outcome was to assess whether the hypothetical changes in MGU were associated with changes in myocardial blood flow (MBF) and myocardial flow reserve (MFR) measured by 13N-ammonia PET/CT. The study was registered at eudract.ema.europa.eu (EudraCT No. 2016-003614-27) and ClinicalTrials.gov (NCT03313752). RESULTS: 16 patients were randomized to dapagliflozin (n = 8) or placebo (n = 8). The groups were well-matched for baseline characteristics (age, diabetes duration, HbA1c, renal and heart function). There was no significant change in MGU during euglycemic hyperinsulinemic clamp in the dapagliflozin group (2.22 ± 0.59 vs 1.92 ± 0.42 µmol/100 g/min, p = 0.41) compared with the placebo group (2.00 ± 0.55 vs 1.60 ± 0.45 µmol/100 g/min, p = 0.5). Dapagliflozin significantly improved MFR (2.56 ± 0.26 vs 3.59 ± 0.35 p = 0.006 compared with the placebo group 2.34 ± 0.21 vs 2.38 ± 0.24 p = 0.81; pint = 0.001) associated with a reduction in resting MBF corrected for cardiac workload (p = 0.005; pint = 0.045). A trend toward an increase in stress MBF was also detected (p = 0.054). CONCLUSIONS: SGLT-2 inhibition increases MFR in T2D patients. We provide new insight into SGLT-2i CV benefits, as our data show that patients on SGLT-2i are more resistant to the detrimental effects of obstructive coronary atherosclerosis due to increased MFR, probably caused by an improvement in coronary microvascular dysfunction. Trial registration EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Compostos Benzidrílicos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos
13.
Metabolites ; 12(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36144232

RESUMO

Maternal obesity causes metabolic dysfunction in the offspring, including dysbiosis, overeating, obesity, and type 2 diabetes. Early-life phases are fundamental for developing subcutaneous (SAT) and brown adipose tissues (BAT), handling energy excesses. Imaging of 18F-fluorodeoxyglucose by positron emission tomography (PET) and radiodensity by computerized tomography (CT) allows assessing adipose tissue (AT) whitening and browning in vivo and the underlying metabolic efficiency. Our aim was to examine these in vivo traits in SAT and BAT concerning gut microbiota composition in 1- and 6-month-old mice born to normal (NDoff) and high-fat diet-fed dams (HFDoff), accounting for body weight responses. We found low radiodensity (high lipids) in HFDoff SAT at 1 month, relating to an increased abundance of Dorea genus in the caecum and activation of the fatty acid biosynthetic pathway. Instead, low BAT radiodensity and glucose uptake were seen in adult HFDoff. Glucose was shifted in favor of BAT at 1 month and SAT at 6 months. In adults, unclassified Enterococcaceae and Rikenellaceae, and Bacillus genera were negatively related to BAT, whereas unclassified Clostridiales genera were related to SAT metabolism. Stratification of HFDoff based on weight-response, namely maternal induced obesity (MIO-HFDoff) or obesity-resistant (MIOR-HFDoff), showed sex dimorphism. Both subgroups were hyperphagic, but only obese mice had hyper-leptinemia and hyper-resistinemia, together with BAT dysfunction, whereas non-obese HFDoff had hyperglycemia and SAT hypermetabolism. In the caecum, unclassified Rikenellaceae (10-fold enrichment in MIO-HFDoff) and Clostridiales genera (4-fold deficiency in MIOR-HFDoff) were important discriminators of these two phenotypes. In conclusion, SAT whitening is an early abnormality in the offspring of HFD dams. In adult life, maternal HFD and the induced excessive food intake translates into a dimorphic phenotype involving SAT, BAT, and microbiota distinctively, reflecting maternal diet*sex interaction. This helps explain inter-individual variability in fetal programming and the higher rates of type 2 diabetes observed in adult women born to obese mothers, supporting personalized risk assessment, prevention, and treatment.

14.
Metabolites ; 12(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448465

RESUMO

Metabolic impairments and liver and adipose depots alterations were reported in subjects with Alzheimer's disease (AD), highlighting the role of the liver-adipose-tissue-brain axis in AD pathophysiology. The gut microbiota might play a modulating role. We investigated the alterations to the liver and white/brown adipose tissues (W/BAT) and their relationships with serum and gut metabolites and gut bacteria in a 3xTg mouse model during AD onset (adulthood) and progression (aging) and the impact of high-fat diet (HFD) and intranasal insulin (INI). Glucose metabolism (18FDG-PET), tissue radiodensity (CT), liver and W/BAT histology, BAT-thermogenic markers were analyzed. 16S-RNA sequencing and mass-spectrometry were performed in adult (8 months) and aged (14 months) 3xTg-AD mice with a high-fat or control diet. Generalized and HFD resistant deficiency of lipid accumulation in both liver and W/BAT, hypermetabolism in WAT (adulthood) and BAT (aging), abnormal cytokine-hormone profiles, and liver inflammation were observed in 3xTg mice; INI could antagonize all these alterations. Specific gut microbiota-metabolome profiles correlated with a significant disruption of the gut-microbiota-liver-adipose axis in AD mice. In conclusion, fat dystrophy in liver and adipose depots contributes to AD progression, and associates with altered profiles of the gut microbiota, which candidates as an appealing early target for preventive intervention.

15.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269799

RESUMO

Interventions affecting gastrointestinal (GI) physiology suggest that the GI tract plays an important role in modulating the uptake of ingested glucose by body tissues. We aimed at validating the use of positron emission tomography (PET) with oral 18FDG administration in mice, and to examine GI effects on glucose metabolism in adipose tissues, brain, heart, muscle, and liver, and interfering actions of oral lipid co-administration. We performed sequential whole-body PET studies in 3 groups of 10 mice, receiving i.p. glucose and 18FDG or oral glucose and 18FDG ± lipids, to measure tissue glucose uptake (GU) and GI transit, and compute the absorption lumped constant (LCa) as ratio of oral 18FDG-to-glucose incremental blood levels. GI and liver histology and circulating hormones were tested to generate explanatory hypothesis. Median LCa was 1.18, constant over time and not significantly affected by lipid co-ingestion. Compared to the i.p. route, the oral route (GI effect) resulted in lower GU rates in adipose tissues and brain, and a greater steatohepatitis score (+17%, p = 0.03). Lipid co-administration accelerated GI transit, in relation to the suppression in GIP, GLP1, glucagon, PP, and PYY (GI motility regulators), abolishing GI effects on subcutaneous fat GU. Duodenal crypt size, gastric wall 18FDG uptake, and macro-vesicular steatosis were inversely related to adipose tissue GU, and positively associated with liver GU. We conclude that 18FDG-PET is a suitable tool to examine the role of the GI tract on glucose transit, absorption, and bio-distribution. The GI effect consists in the suppression of glucose metabolism selectively in organs responsible for energy intake and storage, and is blunted by lipid ingestion. Modulation of gut and liver inflammation, as reflected by high GU, may be involved in the acute signalling of the energy status.


Assuntos
Fluordesoxiglucose F18 , Hepatite , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Hepatite/metabolismo , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Lipídeos , Camundongos , Tomografia por Emissão de Pósitrons
16.
Cell Mol Life Sci ; 79(2): 80, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044528

RESUMO

The gut and brain link via various metabolic and signalling pathways, each with the potential to influence mental, brain and cognitive health. Over the past decade, the involvement of the gut microbiota in gut-brain communication has become the focus of increased scientific interest, establishing the microbiota-gut-brain axis as a field of research. There is a growing number of association studies exploring the gut microbiota's possible role in memory, learning, anxiety, stress, neurodevelopmental and neurodegenerative disorders. Consequently, attention is now turning to how the microbiota can become the target of nutritional and therapeutic strategies for improved brain health and well-being. However, while such strategies that target the gut microbiota to influence brain health and function are currently under development with varying levels of success, still very little is yet known about the triggers and mechanisms underlying the gut microbiota's apparent influence on cognitive or brain function and most evidence comes from pre-clinical studies rather than well controlled clinical trials/investigations. Filling the knowledge gaps requires establishing a standardised methodology for human studies, including strong guidance for specific focus areas of the microbiota-gut-brain axis, the need for more extensive biological sample analyses, and identification of relevant biomarkers. Other urgent requirements are new advanced models for in vitro and in vivo studies of relevant mechanisms, and a greater focus on omics technologies with supporting bioinformatics resources (training, tools) to efficiently translate study findings, as well as the identification of relevant targets in study populations. The key to building a validated evidence base rely on increasing knowledge sharing and multi-disciplinary collaborations, along with continued public-private funding support. This will allow microbiota-gut-brain axis research to move to its next phase so we can identify realistic opportunities to modulate the microbiota for better brain health.


Assuntos
Eixo Encéfalo-Intestino , Encéfalo/fisiologia , Microbioma Gastrointestinal , Animais , Encéfalo/fisiopatologia , Cognição , Humanos , Redes e Vias Metabólicas , Transdução de Sinais
17.
J Vis Exp ; (190)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591981

RESUMO

Positron emission tomography (PET) and computed tomography (CT) are among the most employed diagnostic imaging techniques, and both serve in understanding cardiac function and metabolism. In preclinical research, dedicated scanners with high sensitivity and high spatio-temporal resolution are employed, designed to cope with the demanding technological requirements posed by the small heart size and very high heart rates of mice and rats. In this paper, a bimodal cardiac PET/CT imaging protocol for experimental mouse and/or rat models of cardiac diseases is described, from animal preparation and image acquisition and reconstruction to image processing and visualization. In particular, the 18F-labeled fluorodeoxyglucose ([18F]FDG)-PET scan allows for the measurement and visualization of glucose metabolism in the different segments of the left ventricle (LV). Polar maps are convenient tools to display this information. The CT part consists of a time-resolved 3D reconstruction of the entire heart (4D-CT) using retrospective gating without electrocardiography (ECG) leads, allowing the morphofunctional evaluation of the LV and the subsequent quantification of the most important cardiac function parameters, such as ejection fraction (EF) and stroke volume (SV). Using an integrated PET/CT scanner, this protocol can be executed within the same anesthesia induction without the need to reposition the animal between different scanners. Hence, PET/CT can be seen as a comprehensive tool for the morphofunctional and metabolic evaluation of the heart in several small animal models of cardiac diseases.


Assuntos
Cardiopatias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Ratos , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18 , Cardiopatias/diagnóstico por imagem
18.
Brain Behav Immun ; 100: 311-320, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34920092

RESUMO

Maternal gestational obesity is a risk factor for offspring's neurodevelopment and later neuro-cognitive disorders. Altered gut microbiota composition has been found in patients with neurocognitive disorders, and in relation to maternal metabolic health. We explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity. In groups of children from the Pisa birth Cohort (PISAC), we analysed faecal microbiota composition by 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development, as measured from 6 to 60 months of age by the Griffith's Mental Development Scales. Gut microbiota composition in the first phases of life is dominated by Bifidobacteria (Actinobacteria phylum), with contribution of Escherichia/Shigella and Klebsiella genera (Proteobacteria phylum), whereas Firmicutes become more dominant at 36 months of age. Maternal overweight leads to lower abundance of Bifidobacterium, Blautia and Ruminococcus, and lower practical reasoning scores in the offspring at the age of 36 months. In the whole population, microbiota in the first-pass meconium samples shows much higher alpha diversity compared to later samples, and its composition, particularly Bifidobacterium and Veillonella abundances, correlates with practical reasoning scores at 60 months of age. Maternal overweight correlates with bacterial colonization and with the development of reasoning skills at pre-school age. Associations between neonatal gut colonization and later cognitive function provide new perspectives of primary (antenatal) prevention of neurodevelopmental disorders.


Assuntos
Microbioma Gastrointestinal , Microbiota , Criança , Pré-Escolar , Cognição , Feminino , Microbioma Gastrointestinal/genética , Humanos , Recém-Nascido , Sobrepeso , Gravidez , RNA Ribossômico 16S/genética
19.
Int J Obes (Lond) ; 46(1): 50-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34489524

RESUMO

BACKGROUND: Leptin resistance occurs in obese patients, but its independent contribution to adiposity and the accompanying metabolic diseases, i.e., diabetes, liver steatosis, and steatohepatitis, remains to be established. This study was conducted in an extreme model of leptin resistance to investigate mechanisms initiating diabetes, fat expansion, liver steatosis, and inflammatory disease, focusing on the involvement of glucose intolerance and organ-specific glucose uptake in brown and subcutaneous adipose tissues (BAT, SAT) and in the liver. METHODS: We studied preobese and adult Zucker rats (fa/fa, fa/+ ) during fasting or glucose loading to assess glucose tolerance. Relevant pancreatic and intestinal hormonal levels were measured by Milliplex. Imaging of 18F-fluorodeoxyglucose by positron emission tomography was used to quantify glucose uptake in SAT, BAT, and liver, and evaluate its relationship with adipocyte size and biopsy-proven nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH). RESULTS: Preobese fa/fa pups showed impaired glucose tolerance, adipocyte enlargement, hepatic microsteatosis, and lobular inflammation, with elevated hepatic post-glucose load glucose uptake and production. Adult fa/fa rats had more severe glucose intolerance, fasting hyperglycemia, hormonal abnormalities, elevated glucose uptake in SAT and BAT, and more markedly in the liver, together with macrosteatosis, and highly prevalent hepatic inflammation. Organ glucose uptake was proportional to the degree of fat accumulation and tissue inflammation and was able to dissect healthy from NAFLD and NAFLD/NASH livers. Most severe NASH livers showed a decline in glucose uptake and liver enzymes. CONCLUSIONS: In fa/fa Zucker rats, leptin resistance leads to glucose intolerance, mainly due to hepatic glucose overproduction, preceding obesity, and explaining pancreatic and intestinal hormonal changes and fat accumulation in adipocytes and hepatocytes. Our data support the involvement of liver glucose uptake in the pathogenesis of liver inflammatory disease. Its potential as more generalized biomarker or diagnostic approach remains to be established outside of our leptin-receptor-deficient rat model.


Assuntos
Fígado Gorduroso/metabolismo , Leptina/metabolismo , Obesidade/complicações , Adipócitos/metabolismo , Adipócitos/fisiologia , Animais , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Glucose/análise , Obesidade/sangue , Ratos , Ratos Zucker/anormalidades , Ratos Zucker/metabolismo
20.
Metabolites ; 11(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34940559

RESUMO

Maternal high-fat diet (HFD) affects metabolic and immune development. We aimed to characterize the effects of maternal HFD, and the subsequent diet-normalization of the mothers during a second pregnancy, on the liver and thymus metabolism in their offspring, in minipigs. Offspring born to high-fat (HFD) and normal diet (ND) fed mothers were studied at week 1 and months 1, 6, 12 of life. Liver and thymus glucose uptake (GU) was measured with positron emission tomography during hyperinsulinemic-isoglycemia. Histological analyses were performed to quantify liver steatosis, inflammation, and hepatic hematopoietic niches (HHN), and thymocyte size and density in a subset. The protocol was repeated after maternal-diet-normalization in the HFD group. At one week, HFDoff were characterized by hyperglycemia, hyperinsulinemia, severe insulin resistance (IR), and high liver and thymus GU, associating with thymocyte size and density, with elevated weight-gain, liver IR, and steatosis in the first 6 months of life. Maternal diet normalization reversed thymus and liver hypermetabolism, and increased HHN at one week. It also normalized systemic insulin-sensitivity and liver fat content at all ages. Instead, weight-gain excess, hyperglycemia, and hepatic IR were still observed at 1 month, i.e., end-lactation. We conclude that intra-uterine HFD exposure leads to time-changing metabolic and immune-correlated abnormalities. Maternal diet-normalization reversed most of the effects in the offspring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA